
Remote Agent Demonstration
Gregory A. Dorais

Caelum Research,
NASA Ames Research Center

MS 269-2, Moffett Field, CA 94035

650-604-4851

gadorais@ptolemy.arc.nasa.gov

James Kurien

NASA Ames Research Center
MS 269-2, Moffett Field, CA 94035

650-604-4745

kurien@ptolemy.arc.nasa.gov

Kanna Rajan
Caelum Research,

NASA Ames Research Center
MS 269-2, Moffett Field, CA 94035

650-604-0573

kanna@ptolemy.arc.nasa.gov

ABSTRACT
We describe the computer demonstration of the Remote Agent
Experiment (RAX). The Remote Agent is a high-level, model-
based, autonomous control agent being validated on the NASA
Deep Space 1 spacecraft.

Keywords
Model-based autonomous agents, model-based inference,
executives, planners, spacecraft.

1. INTRODUCTION
The Remote Agent (RA) is autonomous control software that
uses models to reason about the system that it controls and the
environment it is in. It does so to accomplish goals over
extended periods including diagnosing and recovering from
failures without contact with human operators. RA is being
validated on the NASA Deep Space 1 spacecraft (DS1) during
the Remote Agent Experiment (RAX) scheduled for mid-May,
1999. During RAX, RA will control DS1 and perform several
activities including taking pictures, thrusting the ion propulsion
engine, and diagnosing and recovering from simulated failures.
RA, its major components, and RAX have been described in
several papers [1][5][6][7][8][9]. This paper describes a
computer demonstration that was designed to aid people
unfamiliar with spacecraft and autonomous agent technologies to
better understand RA and RAX.

2. REMOTE AGENT ARCHITECTURE

Figure 1. Remote Agent Architecture

As illustrated in figure 1, RA consists of four components: the
Planner/Scheduler (PS), the Mission Manager (MM), the Smart
Executive (Exec), and the Mode Identification and
Reconfiguration module (MIR).

2.1 Planner/Scheduler and Mission Manager
The Planner/Scheduler (PS) generates the plans that RA uses to
control the spacecraft [5]. Given the initial spacecraft state and
goals, PS generates a set of synchronized high-level activities
that, once executed, will achieve the goals. Mission goals are
maintained by MM [1].

PS consists of a heuristic chronological-backtracking search
operating over a constraint-based temporal database [5]. PS
begins with an incomplete plan and expands it into a complete
plan by posting additional constraints in the database. These
constraints originate from the goals and from constraint
templates stored in a model of the domain. PS consults domain-
specific planning experts to access information that is not in its
model. The temporal database and the facilities for defining and
accessing model information during search are provided by the
HSTS system [4].

2.2 Smart Executive
Exec is a reactive, goal-achieving, control system that is
responsible for:

� Requesting and executing plans from the planner

� Requesting and executing failure recoveries from MIR

� Executing goals and commands from human operators

� Managing system resources

� Configuring system devices

� Reach and maintain an appropriate safe-mode as necessary

� System-level fault protection

Exec is goal-oriented rather than command-oriented. We define
a goal as a state of the system being controlled that must be
maintained for a specified length of time. For example, consider
the goal: keep device A on from time x to time y. If Exec were to
detect that device A is off during that period, it would perform
all the commands necessary to turn it back on. This ability is
particularly useful in hostile environments where exogenous
events can cause devices to behave unpredictably.

Exec controls multiple processes in order to coordinate the
simultaneous execution of multiple goals that are often inter-

Real-Time
Execution

Fligh
t

H/W

Monitors
Planning Experts
(incl. Navigation)

Mode Id/
Reconfig

Mission
Manager

Smart
Executive

Planner/
Scheduler

Remote Agent
Ground
System



dependent. In order to execute each goal, Exec uses a model-
based approach to create a command procedure, which is often
complex, designed to robustly achieve the goal.

2.3 Mode Identification/Reconfiguration
The Livingstone inference engine provides the mode
identification (MI) and mode reconfiguration (MR) functionality
in MIR. To track the modes of system devices, Livingstone
eavesdrops on commands that are sent to the spacecraft hardware
by the Exec. As each command is executed, Livingstone receives
observations from spacecraft’s sensors, abstracted by monitors in
the spacecraft’s control software. Livingstone combines these
commands and observations with declarative models of the
spacecraft components to determine the current state of the
system and report it to the Exec. If any such failures occur,
Livingstone will be used to find a repair or workaround that
allows the plan to continue execution.

Livingstone uses algorithms adapted from model-based diagnosis
[2] to provide the above functions. The key idea underlying
model-based diagnosis is that a combination of component modes
is a possible description of the current state of the spacecraft only
if the set of models associated with these modes is consistent
with the observed sensor values. This method does not require
that all aspects of the spacecraft state are directly observable,
providing an elegant solution to the problem of limited
observability.

3. REMOTE AGENT EXPERIMENT
RAX was designed to demonstrate the capabilities of RA on
DS1. During RAX, RA will plan how to thrust DS1's ion engine,
when to take pictures of asteroids, and when to communicate
with Earth. False data will be injected at certain times, unknown
to RA, that simulate spacecraft failures. RA will diagnose the
cause of these failures and often will be able to find an action
that repairs the failure. Otherwise, RA will put the spacecraft
into a safe state and find a new plan that accommodates the
problem. In addition to operating on its own, RA will
demonstrate cooperation with mission controllers by accepting
new mission goals and advice on health of the spacecraft.

4. REMOTE AGENT VISUALIZATION

Figure 3. The Remote Agent Demonstation Window

To demonstrate RA, we use a window, in figure 3, that shows the
messages as they pass between RA and the other spacecraft
software and between RA components. This visualization of the
RA can run in real-time while RA is running to show RA’s
current state, or from a log file of a prior RA run.

The top part of the window has a circle for each component of
the RA and spacecraft flight software components RA
communicates with. For example, RA sends messages to the
attitude control system (ACS) to point the spacecraft toward
Earth for communication or toward an asteroid for imaging. A
small “speech balloon” travels back and forth between the
software components showing which two are currently
communicating. In the bottom portion of the window, the current
message being transmitted is converted into a simplified English
representation. Sensor observations from the spacecraft to RA
are shown as moving yellow spheres. In figure 3, MIR is
confirming to Exec that the main engine is ready. The
demonstration shows a typical 6-day scenario including the
ground uplink the command for RA to start its mission, PS
interacting with the planning expert modules to create three
plans, Exec executing the plans, and MIR sending diagnoses and
recoveries to Exec.

5. ACKNOWLEDGMENTS
Our thanks to Bob Kanefsky for developing the visualization
software for the RAX demo and to the RAX team cited in [1].

6. REFERENCES
[1] Bernard, D.E., Dorais, G.A., Fry, C., Gamble Jr., E.B.,

Kanfesky, B., Kurien, J., Millar, W., Muscettola, N., Nayak,
P.P., Pell, B., Rajan, K., Rouquette, N., Smith, B., and
Williams, B.C. Design of the Remote Agent experiment for
spacecraft autonomy. Procs. of the IEEE Aerospace Conf.,
Snowmass, CO, 1998.



[2] de Kleer, J., and Williams, B. C. Diagnosis With Behavioral
Modes. Procs. of IJCAI-89, 1989.

[3] Gat, E., and Pell, B. Abstract Resource Management in an
Unconstrained Plan Execution System, Procs. of the IEEE
Aerospace Conf., Snowmass, CO, 1998.

[4] Muscettola, N. HSTS: Integrating planning and scheduling,
in Fox, M., and Zweben, M., (eds.), Intelligent Scheduling,
Morgan Kaufman, 1995.

[5] Muscettola, N., Smith, B., Chien, S., Fry, C., Rabideau, G.,
Rajan, K., and Yan, D. On-board Planning for Autonomous
Spacecraft, Procs. of i-SAIRAS, July 1997.

[6] Muscettola, N., Nayak, P.P., Pell, B.,Williams, B.C.,
Remote Agent: to boldy go where no AI system has gone
before. Artificial Intelligence,103(1/2), August, 1998.

[7] Pell, B., Gamble, E., Gat, E., Keesing, R., Kurien, J.,
Millar, W., Nayak, P.P., Plaunt, C., and Williams, B.C. A
hybrid procedural/deductive executive for autonomous
spacecraft. Procs. of Autonomous Agents, 1998.

[8] Pell, B., Gat, E., Keesing, R., Muscettola, N., and Smith,
B. Robust periodic planning and execution for autonomous
spacecraft. Procs. of IJCAI-97, 1997.

[9] Williams, B. C., and Nayak, P. A model-based approach to
reactive self-Configuring systems, Procs. of AAAI-96,1996.


